Air and noise pollution

Internal combustion engines such as reciprocating internal combustion engines produce air pollution emissions, due to incomplete combustion of carbonaceous fuel. The main derivatives of the process are carbon dioxide CO2, water and some soot—also called particulate matter (PM). The effects of inhaling particulate matter have been studied in humans and animals and include asthma, lung cancer, cardiovascular issues, and premature death. There are however some additional products of the combustion process that include nitrogen oxides and sulfur and some uncombusted hydrocarbons, depending on the operating conditions and the fuel-air ratio.

Not all of the fuel will be completely consumed by the combustion process; a small amount of fuel will be present after combustion, some of which can react to form oxygenates, such as formaldehyde or acetaldehyde, or hydrocarbons not initially present in the fuel mixture. The primary causes of this is the need to operate near the stoichiometric ratio for gasoline engines in order to achieve combustion and the resulting "quench" of the flame by the relatively cool cylinder walls, otherwise the fuel would burn more completely in excess air. When running at lower speeds, quenching is commonly observed in diesel (compression ignition) engines that run on natural gas. It reduces the efficiency and increases knocking, sometimes causing the engine to stall. Increasing the amount of air in the engine reduces the amount of the first two pollutants, but tends to encourage the oxygen and nitrogen in the air to combine to produce nitrogen oxides (NOx) that has been demonstrated to be hazardous to both plant and animal health. Further chemicals released are benzene and 1,3-butadiene that are also particularly harmful; and not all of the fuel burns up completely, so carbon monoxide (CO) is also produced.

Carbon fuels contain sulfur and impurities that eventually lead to producing sulfur oxides (SO) and sulfur dioxide (SO2) in the exhaust which promotes acid rain. One final element in exhaust pollution is ozone (O3). This is not emitted directly but made in the air by the action of sunlight on other pollutants to form "ground level ozone", which, unlike the "ozone layer" in the high atmosphere, is regarded as a bad thing if the levels are too high. Ozone is broken down by nitrogen oxides, so one tends to be lower where the other is higher.

For the pollutants described above (nitrogen oxides, carbon monoxide, sulphur dioxide, and ozone) there are accepted levels that are set by legislation to which no harmful effects are observed—even in sensitive population groups. For the other three: benzene, 1,3-butadiene, and particulates, there is no way of proving they are safe at any level so the experts set standards where the risk to health is, "exceedingly small".

Finally, significant contributions to noise pollution are made by internal combustion engines. Automobile and truck traffic operating on highways and street systems produce noise, as do aircraft flights due to jet noise, particularly supersonic-capable aircraft. Rocket engines create the most intense noise.

No comments:

Post a Comment